
 1

sdoddab2@asu.edu, sdanie20@asu.edu, mpervez@asu.edu, sjain238@asu.edu

*Equal Contribution

 Abstract—Existing Reinforcement Learning faces issues in

real-world robotic applications due to the collection of data

online from scratch every time a new policy is learned. To

improve its performance, previously collected data from

off-policy updates, prior runs, or expert demonstrations

can be utilized to accelerate online learning. The proposed

technique can effectively solve challenging real-world

robotic problems. Our work aims to duplicate the results of

the Advantage Weighted Actor Critic algorithm proposed

by [1] to integrate prior data experience with online

learning efficiently in performing robotic control. The

algorithm is applied to three dexterous robot manipulation

tasks of object reorientation, realignment, and

repositioning. The results obtained were compared with

the baseline paper in terms of average returns and success

rates. A comparison analysis of our results with the baseline

showed satisfactory performance.

Keywords—Reinforcement Learning, Advantage Weighted

Actor Critic, Dexterous Manipulation, offline learning, online fine

tuning, real-world robotic applications.

I. INTRODUCTION

DVANCEMENTS in the field of Reinforcement Learning

(RL) have encouraged its usage in complex robotic real-

world applications [1]. Existing RL algorithms, however, are

based on data collected online from scratch each time a new

policy is learned. This attribute makes it impractical in robotic

applications where large data collection is significantly helpful

in accelerating learning. A more practical approach for real-

world robotics is to include prior data sets in the learning

process along with data collected online for further behavior

improvement [1].

Prior data sets in reinforcement learning constitute state-

action trajectories with corresponding rewards. The data can be

collected from expert demonstrations [2], off-policy data [3],

or prior runs of RL. However, this data mostly suffers from the

problem of sub-optimality resulting in learning undesired bias

by the agent [4].

To address this issue, we have presented an RL algorithm

that utilizes the benefits of offline learning from off-policy data

sets but keeps on continuously improving with data collection

while online learning. The proposed method, Advantage

Weighted Actor Critic (AWAC) is derived from the soft actor

critic algorithm presented in [5]. It utilizes dynamic

programming to train a critic network and a supervised learning

style to train an implicitly constrained actor to solve complex

robotic tasks. Dynamic programming enables sample-efficient

learning while supervised actor update implicitly imposed with

constraints limits the effects of distribution shift while training

from offline data along with avoiding overly conservative

updates [6,7]. The approach of accelerated learning by AWAC

is illustrated in Fig. 1.

The algorithm is evaluated on a set of three dexterous

manipulation robotic tasks: Pen reorientation, opening a door,

and relocating an object. Our implementation has been able to

achieve similar trends in learning the policies efficiently as

obtained in the baseline article [1]. The performance evaluation

is made based on a comparative analysis of average returns and

success rates for each of these tasks.

The paper is articulated as follows: Section II. discusses the

design of the AWAC algorithm whose implementation and

simulation are given in Section III. Section IV discusses the

results obtained for our implementation. The challenges faced,

and solutions adopted, are tabulated in Section V. Section VI

concludes with a discussion and Section VII lists the

references.

II. ADVANTAGE WEIGHTED ACTOR CRITIC

ALGORITHM

AWAC consists of two main steps: policy evaluation

performed at the critic network and policy improvement on the

actor network.

A. POLICY EVALUATION (CRITIC NETWORK)

The target of our RL algorithm is to maximize the discounted

return 𝐽(𝜋) = 𝐸𝑝𝜋(𝜏)[𝑅𝑜] where 𝑝𝜋(𝜏) is the optimal policy

distribution. Using gradient descent, the optimal policy can be

learned. However, the learned policy can be ineffective due to

estimation errors. Thus, in this study, the advantage, given as

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (where 𝑉𝜋 is the value function

and 𝑄𝜋 is the action-value function as per policy 𝜋) is used for

policy improvement. The critic estimates the target 𝑄𝜋(𝑠, 𝑎) for

a current policy π. After applying the bellman operator 𝛽𝜋, the

action-value function 𝑄(𝑠, 𝑎) for state 𝑠 and action 𝑎 is given:

AWAC: Accelerating Online Reinforcement

Learning with Offline Datasets

Sushanth Doddabasappa*, Steeve Daniel*, Mahum Pervez*, Siddharth Jain*

 Arizona State University, Tempe

A

Fig. 1. The problem of accelerating online RL with offline datasets. In (a), the

robot learns a policy entirely from an offline dataset. In (b), the robot gets to

interact with the world and collect on-policy samples to improve the policy

beyond what it could learn offline.

mailto:sdoddab2@asu.edu
mailto:sdanie20@asu.edu
mailto:mpervez@asu.edu
mailto:sjain238@asu.edu

 2

Fig. 3. AWAC algorithm pseudocode [1]

as:

𝛽𝜋𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑝(𝑠′|𝑠,𝑎)[𝐸𝜋(𝑎′|𝑠′)[𝑄𝜋(𝑠′, 𝑎′)]]

Iterating through the above equation with the update given

as 𝑄𝑘+1 = 𝛽𝜋𝑄𝑘, the result approaches the targeted

distribution 𝑄𝜋(𝑠, 𝑎). The critic network is learned by a deep

neural network with critic network parameter 𝜑 given as:

𝜑𝑘 = arg min
𝜑

𝐸𝐷[𝑄𝜑(𝑠, 𝑎) − 𝑦)2] (1)

𝑦 = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′,𝑎′[𝑄𝜑𝑘−1
(𝑠′, 𝑎′)] (2)

Where, 𝑄𝜑(𝑠, 𝑎) is the estimated Q value at state s and action

a at the current time step and 𝑄𝜑𝑘−1
(𝑠′, 𝑎′) is the estimated Q

value for the next state 𝑠′ and action 𝑎′at the past step k-1. The

expectation is taken w.r.t data 𝐷 = {(𝑠, 𝑎, 𝑠′, 𝑟)𝑗}, 𝑟(𝑠, 𝑎) is the

stage reward at state 𝑠 with action taken 𝑎 and 𝛾 is the discount

factor.

B. POLICY IMPROVEMENT (ACTOR NETWORK)

At the policy improvement stage, the actor network with

parameters 𝜃𝑘 predicts the distribution 𝜋𝑘based on the current

estimate 𝑄𝜋from the critic.

To avoid bootstrapping errors, and to ensure stable data

distribution modeling, constraints are added implicitly on the

policy improvement update such that:

𝜋𝑘+1 = arg max
𝜋

𝐸𝑎~𝜋(.|𝑠)[𝐴𝜋𝑘(𝑠, 𝑎)] (3)

𝑠. 𝑡. 𝐷𝐾𝐿(𝜋(. |𝑠)||𝜋𝛽(. |𝑠)) ≤ 𝜖 (4)

𝜋𝛽(. |𝑠) is the distribution of past policies from the prior RL

runs obtained from data collection through the replay buffer 𝛽.

𝜖 is the probability of taking exploratory moves. Computing the

optimal solution for Eq. (3) and projecting the policy onto it,

results in the following actor update:

𝜃𝑘+1 = arg max
𝜃

𝐸𝑠,𝑎~𝛽[log 𝜋𝜃(𝑎|𝑠) exp (
1

𝜆
𝐴𝜋𝑘(𝑠, 𝑎))] (5)

where lambda is the Lagrange multiplier taken as 𝜆 = 0.3.

The actor update is based on weighted maximum likelihood

where the state action pairs are weighted in each successive

iteration based on the advantage received from the trained

critic. The actor does not learn explicitly from any parametric

behavioral model. It rather simply samples states and actions

from the replay buffers.

Fig. 2. Shows a block diagram for AWAC based algorithm

for the real-time control in dexterous manipulation with a

robotic hand. The states from the environment are used to

generate value iteration which is utilized by the critic network

for the estimation of discounted rewards using off-policy

updates. The estimates are utilized by the actor to predict the

policy distribution using an on-policy algorithm where actions

are applied based on the system’s current state.

C. ALGORITHM SUMMARY

The AWAC algorithm’s pseudocode is summarized in Fig.

3. The critic and actor networks are implemented using deep

neural networks with Stochastic Gradient Descent (SGD)

updates applied to Eq. 1 And Eq. 5 respectively. For data

efficiency, AWAC uses an off-policy based critic via Temporal

Difference (TD) bootstrapping, while implementing a

constrained actor to mitigate bootstrapping errors. The

conservative actor updates are avoided by implicit constraints

without any explicit behavior modelling of the policy.

III. IMPLEMENTATION & SIMULATION

We evaluated the AWAC algorithm in the Dexterous

Manipulation environment. Detailed descriptions of the

environment and each task is as follows:

A. Dexterous Manipulation with a Robotic Hand.

This is a set of three different tasks for controlling a 5-

fingered robotic hand as illustrated in Fig. 4. All three tasks [4]

require the robotic hand to carefully manipulate an object

accurately.

(a) Pen Reorientation: This task requires the robotic hand to

reorient a pen into the desired orientation. The state space

dimension is 45 and the action space dimension is 24. The

robotic hand rotates the pen from an initial angle, 𝑥𝑜 to a

final angle 𝑑𝑜. The reward function is given by the

equation 𝑟 = 1|𝑥𝑜.𝑑𝑜|≤0.95 −1. And the cumulative

discounted reward is given by 𝑅𝑡 = ∑ 𝛾𝑖𝑟(𝑠𝑖 , 𝑎𝑖)
𝑇
𝑖=𝑡 .

(b) Door Opening by twisting a latch: In this task, the robotic

hand is required to reach and twist a latch to open the door.

The state space dimension is 39 and the action space

dimension is 28. The reward function is given by the

equation 𝑟 = 1𝑑>1.4 − 1
(c) Object Relocation: This task relocates an object to the

desired position. The state space dimension is 39 and the

action space dimension is 30. The initial position of the

object is given by 𝑥𝑝and the desired position by 𝑑𝑝The

reward function is given by: 𝑟 = 1|𝑥𝑝−𝑑𝑝|≤0.1 − 1

Fig. 2. Block diagram for Advantage Weighted Actor Critic (AWAC)

algorithm implementation [1]

 3

B. ACTOR, CRITIC DEEP NEURAL NETWORK

ARCHITECTURE & HYPERPARAMETERS

AWAC is implemented using the soft actor critic

algorithm given in [5]. The critic network is based on a

double Q-learning strategy given in [8] estimating Q values

(trainer network) and V values (target network) from states

and actions provided at the input layer. The actor network

predicts policy distributions 𝜋 and 𝜋𝛽 by taking states at the

input layer. All the networks contain two hidden layers with

256 neurons in each hidden layer. The architecture of critic

and actor networks for all the dexterous manipulation tasks

is depicted in Fig. 5 & Fig.6 respectively.

Hyperparameters in Deep RL are critical for training

successful agents. The base hyperparameters are given in

Table 1. The optimization is performed using Adam [9] and

the hidden layer activation function is ReLU.

The policy learning rate is set as 3 × 10−4 and discount

factor as 0.99.

C. SYSTEM SETUP, DATA SET & TRAINING PROCESS

 To ensure flexibility while experimenting & training, and to

accelerate development, a local computing machine was

utilized. Anaconda environment was set up on it to run

simulations and perform training jobs. The computing

machine’s hardware specifications are as follows:

• CUDA enabled GTX1660 Ti NVIDIA GPU with 6GB

of super-fast GDDR6 VRAM

• Intel i7 11th gen 8 core CPU

• 16 GB RAM

Fig. 4. Dexterous Manipulation Tasks with a Robotic Hand [1] (a) shows controlling a 5-fingered robotic hand to pick up a pen and spin it into a given orientation
(Task 1 GIF) (b) shows task of opening a door, which requires first twisting a latch (Task 2 GIF) whereas (c) shows controlling a 5-fingered robotic hand to

reposition an object from initial to targeted spot (Task 3 GIF)

Fig. 5. Critic Network Architecture to estimate Q values/ V values

[5,8]

Fig. 6. Actor Network Architecture incorporating offline and

online learning to estimate policy functions [5]

Table. 1. Hyperparameters used for the RL experiment [1]

https://github.com/aravindr93/hand_dapg/blob/master/README.md#getting-started
https://bair.berkeley.edu/static/blog/awac/02_hand.gif
https://bair.berkeley.edu/static/blog/awac/03_hand.gif
https://bair.berkeley.edu/static/blog/awac/01_hand.gif

 4

**The results we produced for the three manipulation tasks was with number

of seeds = 1, while baseline paper [1] have used number of seeds = 3.

The dexterous manipulation demonstration dataset for the

three robotic hand tasks, provided by the authors, was utilized

for the replication of AWAC results.

Three separate training jobs were performed, one for each of

the dexterous manipulation tasks. In the above-mentioned

machine, an average training time of 6 hours was observed for

each training job. For each training task, the number of seeds

was set to 1 to improve the training time. Each task’s training

job was executed for 500 episodes, with 1000 timesteps per

episode.

IV. RESULTS & ANALYSIS

This section describes the training details and results of each

manipulation robotic task at hand.

The training dataset for all three tasks consisted of five

hundred trajectories constructed from a behavioral cloned

policy [1]. During training for each task, the hyperparameters

are listed in Table. 1 and neural network configurations

showcased in Fig. 5 and Fig.6 have been utilized**.

A. Pen Reorientation Task Training & Results:

For the reorientation task two graphs were generated during

training: average return vs timesteps, Fig. 7(a), and success rate

vs timesteps, Fig. 7(b). We compared the success rate graph

with the baseline paper (Fig. 7(c)) to observe a high correlation.

From Fig. 7(a), the saturation of average return at 200,000

timesteps indicates the training’s convergence to an optimal

policy.

Table.2 summarizes the performance parameters associated

with the reorientation training job. Fig. 8 is a screenshot from

the simulation video that showcases the reorientation task being

solved. We have been able to successfully achieve the desired

success rate for this task.

B. Door Opening Task Training & Results

For the door opening task the two graphs of average return vs

timesteps, Fig. 9(a) and success rate vs timesteps, Fig. 9(b)

were generated.

For the success rate graph (Fig. 9(b)), we see noticeable

correlations with the baseline graph, Fig. 9(c), such as the dip

at around 100k timesteps. However, the success rate in our

implementation saturates in the vicinity of 0.6.

Table. 3 summarizes the performance parameters associated

with the door opening task’s training job. Fig. 10 is a

screenshot from the simulation video that showcases the door

opening task being solved. The success rate we obtained for the

task is satisfactory.

C. Object Relocation Task Training & Results

For the object relocation task success rate vs timesteps,

Figure 11(a) was generated.

The object relocation task is the most difficult one among the

three. This is apparent from Figure 11(b) which showcases the

author's training plot [1] for over 4 million timesteps. This is 8

times more than our 500,000 timesteps implementation.

Notably, comparing within the window of the first 500,000

timesteps, we observe a high correlation between our

implementation and the authors’. We were able to successfully

achieve the desired success rate for this task in this window.

Fig. 7. Simulation Results of Pen Reorientation task (a) Average Return versus
iterations for our implementation of AWAC (b) Success Rate versus iterations

for our implementation of AWAC (c) Success Rate versus iterations from

baseline paper [1]

Table 2. Performance parameters observed for average returns

versus time steps for Pen Reorientation task

Performance Parameters Values

Average of all Returns 8383.55

Deviation Average Return 2880

Number of episodes 500

Time steps per episode 1000

Fig. 8. Pen Reorientation Task - Screenshot from the

simulation video

https://drive.google.com/file/d/1SsVaQKZnY5UkuR78WrInp9XxTdKHbF0x/view
https://drive.google.com/file/d/1AwFBk452VNY1qKppTMYPB8FhuBSvL7Bd/view?resourcekey

 5

V. CHALLENGES FACED & RESOLUTIONS

This section mentions the challenges we faced during the

implementation of the given project tabulated in Table 4.

VI. CONCLUSION & FUTURE WORK

In this study, the limitations of existing RL strategies were

addressed by proposing a novel technique of AWAC

combining the benefits of offline training with online fine

tuning in various practical robotic applications. We simulated

our technique on three dexterous manipulation tasks and

compared our results with the baseline article for satisfactory

performance. The tasks of reorientation and realignment gave

satisfactory results in terms of average returns and success

rates. However, the reallocation task’s duplication faced issues

due to limited computational resources.

While training the agent, we require a system with an

efficient graphics card and a powerful Central Processing Unit

(CPU). Due to our system limitations, we were not able to train

the agent for more than 500 episodes.

For future work, we can compare our results using AWAC

with the other potential on-policy/ off-policy RL algorithms for

analysis and performance comparison in more challenging real-

world robotic applications. For overcoming the limitations of

the system, we aim to utilize the on-campus computational

resources for fair comparison analysis.

Fig. 9. Simulation Results of Door Opening by twisting a latch task (a)

Average Return versus iterations for our implementation of AWAC (b)
Success Rate versus iterations for our implementation of AWAC (c) Success

Rate versus iterations from baseline paper [1]

Table 3. Performance parameters observed for average returns versus

time steps for Door Opening task

Performance Parameters Values

Average of all Returns 140.4

Deviation Average Return 108.10

Number of episodes 500

Time steps per episode 1000

Fig. 10. Door Opening Task - Screenshot from the simulation video

Fig. 11. Simulation Results of Object Reorientation Task (a) Success

Rate versus iterations for our implementation of AWAC (b) Success

Rate versus iterations from baseline paper [1]

https://drive.google.com/file/d/1CubWjwT8BNGOsXo6mw99RfeuHOzWfg_w/view?usp=share_link

 6

VII. REFERENCES

[1] Nair, Ashvin, Abhishek Gupta, Murtaza Dalal, and Sergey Levine.
"Awac: Accelerating online reinforcement learning with offline

datasets." arXiv preprint arXiv:2006.09359 (2020).

[2] Atkeson, Christopher G., and Stefan Schaal. "Robot learning from
demonstration." In ICML, vol. 97, pp. 12-20. 1997.

[3] Gao, Yang, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor

Darrell. "Reinforcement learning from imperfect demonstrations."
arXiv preprint arXiv:1802.05313 (2018).

[4] Rajeswaran, Aravind, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,

John Schulman, Emanuel Todorov, and Sergey Levine. "Learning
complex dexterous manipulation with deep reinforcement learning and

demonstrations." arXiv preprint arXiv:1709.10087 (2017).

[5] Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
"Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor." In International conference on machine

learning, pp. 1861-1870. PMLR, 2018.

[6] Fujimoto, Scott, David Meger, and Doina Precup. "Off-policy deep

reinforcement learning without exploration." In International

conference on machine learning, pp. 2052-2062. PMLR, 2019.
[7] Kumar, Aviral, Justin Fu, Matthew Soh, George Tucker, and Sergey

Levine. "Stabilizing off-policy q-learning via bootstrapping error

reduction." Advances in Neural Information Processing Systems 32
(2019).

[8] Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing function

approximation error in actor-critic methods." In International
conference on machine learning, pp. 1587-1596. PMLR, 2018.

[9] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).

PROJECT CONTRIBUTIONS:

Sushanth Doddabasappa: Sushanth worked on the system setup

for the simulation of the environment and training. Sushanth

refactored the author’s training script to support local training

and worked on resolving dependency issues related to the

training script. Sushanth developed a custom script to

investigate and understand the input/output configurations and

integrations of the policy neural network. Sushanth has

contributed to the writing of the progress check and has assisted

with revisions to the subsequent drafts. Sushanth has been

instrumental in the developmental work for the processing of

the output of the training results and for incorporating it into

the report’s results section. Sushanth has contributed to the

writing of the final report.

Steve Daniel: Steeve worked majorly on running the trainings

on his machine and creating records of the training progress.

Steeve was also responsible for working with Sushant to fix the

issues faced during system setup and making sure the training

was run. Steeve was also responsible for recording the training

results and simulations to be incorporated into the report.

Steeve has contributed to the writing of the progress checks.

Steeve has contributed to the writing of Abstract, Introduction

and the Implementation sections of the final report.

Mahum Pervez: Mahum has become the subject matter expert

for the theory behind each of the algorithms and advises the rest

of the team on the theory of the algorithms. She helped the team

in understanding and code the deep neural network architecture

in the given project. She has been actively involved in writing

progress reports, and compilation of the final report. She has

written the AWAC architecture section, challenges faced and

solutions adopted, and conclusion of the report and proofread

the complete document for technical writing check.

Sidharth Jain: Siddharth has provided research, literature

review and understanding of the paper and the algorithm.

Siddharth has contributed to the writing of the progress check

and has assisted with revisions to the subsequent drafts.

Siddharth has also helped with the understanding of the

kinematics and dynamics part of the robotic hand by defining

the different spaces. Siddharth has contributed to the writing of

the final report by working on the hyperparameters,

implementation and discussion section of the report.

Table 4. Challenges faced in the implementation of AWAC and the

solutions adopted

No.# Challenges Faced Solutions adopted

1.

The training script

was designed with

number of seeds as

3 to run three

training parallel

experiments on 3

Amazon Web

Services ec2

machines.

The training script was

restructured to

accommodate local

training and we were able

to reproduce results with

just one seed.

2.

The requirements

listed for the

environment setup

were incomplete.

By parsing the logs, the

missing packages were

installed. We were

cautious while installing

these packages and

ensured that they don’t

break the existing conda

environment by using

the command:

pip install –no-

dependencies

<package_name>

3.

Deprecated

packages such as

path and

multiworld raised

“module not

found” errors.

Path package was replaced

with pathlib in all such

instances. mutiworld was

installed from the source.

	I. Introduction
	II. ADVANTAGE WEIGHTED ACTOR CRITIC ALGORITHM
	A. POLICY EVALUATION (CRITIC NETWORK)
	B. POLICY IMPROVEMENT (ACTOR NETWORK)
	C. ALGORITHM SUMMARY

	III. IMPLEMENTATION & SIMULATION
	A. Dexterous Manipulation with a Robotic Hand.
	B. ACTOR, CRITIC DEEP NEURAL NETWORK ARCHITECTURE & HYPERPARAMETERS
	C. SYSTEM SETUP, DATA SET & TRAINING PROCESS

	IV. RESULTS & ANALYSIS
	A. Pen Reorientation Task Training & Results:
	B. Door Opening Task Training & Results
	C. Object Relocation Task Training & Results

	V. CHALLENGES FACED & RESOLUTIONS
	VI. CONCLUSION & FUTURE WORK
	VII. References
	PROJECT CONTRIBUTIONS:

