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  Abstract—Existing Reinforcement Learning faces issues in 

real-world robotic applications due to the collection of data 

online from scratch every time a new policy is learned. To 

improve its performance, previously collected data from 

off-policy updates, prior runs, or expert demonstrations 

can be utilized to accelerate online learning. The proposed 

technique can effectively solve challenging real-world 

robotic problems. Our work aims to duplicate the results of 

the Advantage Weighted Actor Critic algorithm proposed 

by [1] to integrate prior data experience with online 

learning efficiently in performing robotic control. The 

algorithm is applied to three dexterous robot manipulation 

tasks of object reorientation, realignment, and 

repositioning.  The results obtained were compared with 

the baseline paper in terms of average returns and success 

rates. A comparison analysis of our results with the baseline 

showed satisfactory performance.  

 
Keywords—Reinforcement Learning, Advantage Weighted 

Actor Critic, Dexterous Manipulation, offline learning, online fine 

tuning, real-world robotic applications. 

I. INTRODUCTION 

DVANCEMENTS in the field of Reinforcement Learning 

(RL) have encouraged its usage in complex robotic real-

world applications [1]. Existing RL algorithms, however, are 

based on data collected online from scratch each time a new 

policy is learned. This attribute makes it impractical in robotic 

applications where large data collection is significantly helpful 

in accelerating learning. A more practical approach for real-

world robotics is to include prior data sets in the learning 

process along with data collected online for further behavior 

improvement [1].  

Prior data sets in reinforcement learning constitute state-

action trajectories with corresponding rewards. The data can be 

collected from expert demonstrations [2], off-policy data [3], 

or prior runs of RL. However, this data mostly suffers from the 

problem of sub-optimality resulting in learning undesired bias 

by the agent [4]. 

To address this issue, we have presented an RL algorithm 

that utilizes the benefits of offline learning from off-policy data 

sets but keeps on continuously improving with data collection 

while online learning. The proposed method, Advantage 

Weighted Actor Critic (AWAC) is derived from the soft actor 

critic algorithm presented in [5]. It utilizes dynamic 

programming to train a critic network and a supervised learning 

style to train an implicitly constrained actor to solve complex 

robotic tasks. Dynamic programming enables sample-efficient 

learning while supervised actor update implicitly imposed with 

constraints limits the effects of distribution shift while training 

from offline data along with avoiding overly conservative 

updates [6,7]. The approach of accelerated learning by AWAC 

is illustrated in Fig. 1.  

The algorithm is evaluated on a set of three dexterous 

manipulation robotic tasks: Pen reorientation, opening a door, 

and relocating an object. Our implementation has been able to 

achieve similar trends in learning the policies efficiently as 

obtained in the baseline article [1]. The performance evaluation 

is made based on a comparative analysis of average returns and 

success rates for each of these tasks. 

The paper is articulated as follows: Section II. discusses the 

design of the AWAC algorithm whose implementation and 

simulation are given in Section III. Section IV discusses the 

results obtained for our implementation. The challenges faced, 

and solutions adopted, are tabulated in Section V. Section VI 

concludes with a discussion and Section VII lists the 

references.    

II. ADVANTAGE WEIGHTED ACTOR CRITIC 

ALGORITHM 

AWAC consists of two main steps: policy evaluation 

performed at the critic network and policy improvement on the 

actor network.  

A. POLICY EVALUATION (CRITIC NETWORK) 

The target of our RL algorithm is to maximize the discounted 

return 𝐽(𝜋) = 𝐸𝑝𝜋(𝜏)[𝑅𝑜] where 𝑝𝜋(𝜏) is the optimal policy 

distribution. Using gradient descent, the optimal policy can be 

learned. However, the learned policy can be ineffective due to 

estimation errors. Thus, in this study, the advantage, given as 

𝐴𝜋(𝑠, 𝑎) =  𝑄𝜋(𝑠, 𝑎) −  𝑉𝜋(𝑠) (where 𝑉𝜋 is the value function 

and 𝑄𝜋 is the action-value function as per policy 𝜋) is used for 

policy improvement. The critic estimates the target 𝑄𝜋(𝑠, 𝑎) for 

a current policy π. After applying the bellman operator 𝛽𝜋, the 

action-value function 𝑄(𝑠, 𝑎) for state 𝑠 and action 𝑎 is given: 
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Fig. 1. The problem of accelerating online RL with offline datasets. In (a), the 

robot learns a policy entirely from an offline dataset. In (b), the robot gets to 

interact with the world and collect on-policy samples to improve the policy 

beyond what it could learn offline. 
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Fig. 3. AWAC algorithm pseudocode [1] 

as:  

𝛽𝜋𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑝(𝑠′|𝑠,𝑎)[𝐸𝜋(𝑎′|𝑠′)[𝑄𝜋(𝑠′, 𝑎′)]] 

Iterating through the above equation with the update given 

as 𝑄𝑘+1 =  𝛽𝜋𝑄𝑘, the result approaches the targeted 

distribution 𝑄𝜋(𝑠, 𝑎). The critic network is learned by a deep 

neural network with critic network parameter 𝜑 given as: 

𝜑𝑘 = arg min
𝜑

𝐸𝐷[𝑄𝜑(𝑠, 𝑎) − 𝑦)2]                   (1)   

𝑦 = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′,𝑎′[𝑄𝜑𝑘−1
(𝑠′, 𝑎′)]                  (2) 

Where, 𝑄𝜑(𝑠, 𝑎) is the estimated Q value at state s and action 

a at the current time step and 𝑄𝜑𝑘−1
(𝑠′, 𝑎′) is the estimated Q 

value for the next state 𝑠′ and action 𝑎′at the past step k-1. The 

expectation is taken w.r.t data 𝐷 = {(𝑠, 𝑎, 𝑠′, 𝑟)𝑗}, 𝑟(𝑠, 𝑎) is the 

stage reward at state 𝑠 with action taken 𝑎 and 𝛾 is the discount 

factor. 

B. POLICY IMPROVEMENT (ACTOR NETWORK) 

At the policy improvement stage, the actor network with 

parameters 𝜃𝑘 predicts the distribution 𝜋𝑘based on the current 

estimate 𝑄𝜋from the critic.  

To avoid bootstrapping errors, and to ensure stable data 

distribution modeling, constraints are added implicitly on the 

policy improvement update such that: 

𝜋𝑘+1 = arg max
𝜋

𝐸𝑎~𝜋(.|𝑠)[𝐴𝜋𝑘(𝑠, 𝑎)]                (3) 

𝑠. 𝑡. 𝐷𝐾𝐿(𝜋(. |𝑠)||𝜋𝛽(. |𝑠)) ≤  𝜖                       (4) 

𝜋𝛽(. |𝑠) is the distribution of past policies from the prior RL 

runs obtained from data collection through the replay buffer 𝛽. 

𝜖 is the probability of taking exploratory moves. Computing the 

optimal solution for Eq. (3) and projecting the policy onto it, 

results in the following actor update: 

𝜃𝑘+1 = arg max
𝜃

𝐸𝑠,𝑎~𝛽[log 𝜋𝜃(𝑎|𝑠) exp (
1

𝜆
𝐴𝜋𝑘(𝑠, 𝑎))]   (5) 

where lambda is the Lagrange multiplier taken as 𝜆 = 0.3. 

The actor update is based on weighted maximum likelihood 

where the state action pairs are weighted in each successive 

iteration based on the advantage received from the trained 

critic. The actor does not learn explicitly from any parametric 

behavioral model. It rather simply samples states and actions 

from the replay buffers. 

Fig. 2. Shows a block diagram for AWAC based algorithm 

for the real-time control in dexterous manipulation with a 

robotic hand. The states from the environment are used to 

generate value iteration which is utilized by the critic network 

for the estimation of discounted rewards using off-policy 

updates. The estimates are utilized by the actor to predict the 

policy distribution using an on-policy algorithm where actions 

are applied based on the system’s current state. 

C. ALGORITHM SUMMARY 

The AWAC algorithm’s pseudocode is summarized in Fig. 

3. The critic and actor networks are implemented using deep 

neural networks with Stochastic Gradient Descent (SGD) 

updates applied to Eq. 1 And Eq. 5 respectively.  For data 

efficiency, AWAC uses an off-policy based critic via Temporal 

Difference (TD) bootstrapping, while implementing a 

constrained actor to mitigate bootstrapping errors. The 

conservative actor updates are avoided by implicit constraints 

without any explicit behavior modelling of the policy. 

III.  IMPLEMENTATION & SIMULATION 

We evaluated the AWAC algorithm in the Dexterous 

Manipulation environment.  Detailed descriptions of the 

environment and each task is as follows: 

A. Dexterous Manipulation with a Robotic Hand. 

This is a set of three different tasks for controlling a 5-

fingered robotic hand as illustrated in Fig. 4. All three tasks [4] 

require the robotic hand to carefully manipulate an object 

accurately.  

(a) Pen Reorientation: This task requires the robotic hand to 

reorient a pen into the desired orientation. The state space 

dimension is 45 and the action space dimension is 24. The 

robotic hand rotates the pen from an initial angle, 𝑥𝑜 to a 

final angle 𝑑𝑜. The reward function is given by the 

equation 𝑟 = 1|𝑥𝑜.𝑑𝑜|≤0.95  −1.  And the cumulative 

discounted reward is given by  𝑅𝑡 =  ∑ 𝛾𝑖𝑟(𝑠𝑖 , 𝑎𝑖)
𝑇
𝑖=𝑡 . 

(b) Door Opening by twisting a latch: In this task, the robotic 

hand is required to reach and twist a latch to open the door. 

The state space dimension is 39 and the action space 

dimension is 28. The reward function is given by the 

equation 𝑟 = 1𝑑>1.4 − 1  
(c) Object Relocation: This task relocates an object to the 

desired position. The state space dimension is 39 and the 

action space dimension is 30. The initial position of the 

object is given by 𝑥𝑝and the desired position by 𝑑𝑝The 

reward function is given by: 𝑟 = 1|𝑥𝑝−𝑑𝑝|≤0.1  − 1 

 

 

 
Fig. 2. Block diagram for Advantage Weighted Actor Critic (AWAC) 

algorithm implementation [1] 
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B. ACTOR, CRITIC DEEP NEURAL NETWORK 

ARCHITECTURE & HYPERPARAMETERS 

AWAC is implemented using the soft actor critic 

algorithm given in [5]. The critic network is based on a 

double Q-learning strategy given in [8] estimating Q values 

(trainer network) and V values (target network) from states 

and actions provided at the input layer. The actor network 

predicts policy distributions 𝜋 and 𝜋𝛽 by taking states at the 

input layer. All the networks contain two hidden layers with 

256 neurons in each hidden layer. The architecture of critic 

and actor networks for all the dexterous manipulation tasks 

is depicted in Fig. 5 & Fig.6 respectively.  

Hyperparameters in Deep RL are critical for training 

successful agents. The base hyperparameters are given in 

Table 1. The optimization is performed using Adam [9] and 

the hidden layer activation function is ReLU.  

The policy learning rate is set as 3 × 10−4 and discount 

factor as 0.99.  

 

C. SYSTEM SETUP, DATA SET & TRAINING PROCESS 

 To ensure flexibility while experimenting & training, and to 

accelerate development, a local computing machine was 

utilized. Anaconda environment was set up on it to run 

simulations and perform training jobs. The computing 

machine’s hardware specifications are as follows:  

• CUDA enabled GTX1660 Ti NVIDIA GPU with 6GB 

of super-fast GDDR6 VRAM 

• Intel i7 11th gen 8 core CPU 

• 16 GB RAM 

 

 

Fig. 4. Dexterous Manipulation Tasks with a Robotic Hand [1] (a) shows controlling a 5-fingered robotic hand to pick up a pen and spin it into a given orientation 
(Task 1 GIF) (b) shows task of opening a door, which requires first twisting a latch (Task 2 GIF) whereas (c) shows controlling a 5-fingered robotic hand to 

reposition an object from initial to targeted spot (Task 3 GIF) 

 

 
Fig. 5. Critic Network Architecture to estimate Q values/ V values 

[5,8]  

 

 
Fig. 6. Actor Network Architecture incorporating offline and 

online learning to estimate policy functions [5] 

Table. 1. Hyperparameters used for the RL experiment [1] 

 

 

https://github.com/aravindr93/hand_dapg/blob/master/README.md#getting-started
https://bair.berkeley.edu/static/blog/awac/02_hand.gif
https://bair.berkeley.edu/static/blog/awac/03_hand.gif
https://bair.berkeley.edu/static/blog/awac/01_hand.gif
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**The results we produced for the three manipulation tasks was with number 

of seeds = 1, while baseline paper [1] have used number of seeds = 3. 

  

The dexterous manipulation demonstration dataset for the 

three robotic hand tasks, provided by the authors, was utilized 

for the replication of AWAC results.  

Three separate training jobs were performed, one for each of 

the dexterous manipulation tasks. In the above-mentioned 

machine, an average training time of 6 hours was observed for 

each training job. For each training task, the number of seeds 

was set to 1 to improve the training time. Each task’s training 

job was executed for 500 episodes, with 1000 timesteps per 

episode. 

IV. RESULTS & ANALYSIS 

This section describes the training details and results of each 

manipulation robotic task at hand. 

The training dataset for all three tasks consisted of five 

hundred trajectories constructed from a behavioral cloned 

policy [1]. During training for each task, the hyperparameters 

are listed in Table. 1 and neural network configurations 

showcased in Fig. 5 and Fig.6 have been utilized**. 

A. Pen Reorientation Task Training & Results: 

For the reorientation task two graphs were generated during 

training: average return vs timesteps, Fig. 7(a), and success rate 

vs timesteps, Fig. 7(b). We compared the success rate graph 

with the baseline paper (Fig. 7(c)) to observe a high correlation. 

From Fig. 7(a), the saturation of average return at 200,000 

timesteps indicates the training’s convergence to an optimal 

policy. 

Table.2 summarizes the performance parameters associated 

with the reorientation training job. Fig. 8 is a screenshot from 

the simulation video that showcases the reorientation task being 

solved. We have been able to successfully achieve the desired 

success rate for this task. 

B. Door Opening Task Training & Results 

For the door opening task the two graphs of average return vs 

timesteps, Fig. 9(a) and success rate vs timesteps, Fig. 9(b) 

were generated. 

For the success rate graph (Fig. 9(b)), we see noticeable 

correlations with the baseline graph, Fig. 9(c), such as the dip 

at around 100k timesteps. However, the success rate in our 

implementation saturates in the vicinity of 0.6. 

Table. 3 summarizes the performance parameters associated 

with the door opening task’s training job.  Fig. 10 is a 

screenshot from the simulation video that showcases the door 

opening task being solved. The success rate we obtained for the 

task is satisfactory.  

C. Object Relocation Task Training & Results 

For the object relocation task success rate vs timesteps, 

Figure 11(a) was generated.  

The object relocation task is the most difficult one among the 

three. This is apparent from Figure 11(b) which showcases the 

author's training plot [1] for over 4 million timesteps. This is 8 

times more than our 500,000 timesteps implementation. 

Notably, comparing within the window of the first 500,000 

timesteps, we observe a high correlation between our 

implementation and the authors’. We were able to successfully 

achieve the desired success rate for this task in this window. 

 

 

 

 

 

 

 

 

Fig. 7. Simulation Results of Pen Reorientation task (a) Average Return versus 
iterations for our implementation of AWAC (b) Success Rate versus iterations 

for our implementation of AWAC (c) Success Rate versus iterations from 

baseline paper [1] 

Table 2. Performance parameters observed for average returns 

versus time steps for Pen Reorientation task  

Performance Parameters Values 

Average of all Returns 8383.55 

Deviation Average Return 2880 

Number of episodes 500 

Time steps per episode 1000 

 

 

 

 

 
Fig. 8. Pen Reorientation Task - Screenshot from the 

simulation video 

https://drive.google.com/file/d/1SsVaQKZnY5UkuR78WrInp9XxTdKHbF0x/view
https://drive.google.com/file/d/1AwFBk452VNY1qKppTMYPB8FhuBSvL7Bd/view?resourcekey
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V. CHALLENGES FACED & RESOLUTIONS 

This section mentions the challenges we faced during the 

implementation of the given project tabulated in Table 4. 

VI. CONCLUSION & FUTURE WORK 

In this study, the limitations of existing RL strategies were 

addressed by proposing a novel technique of AWAC 

combining the benefits of offline training with online fine 

tuning in various practical robotic applications. We simulated 

our technique on three dexterous manipulation tasks and 

compared our results with the baseline article for satisfactory 

performance. The tasks of reorientation and realignment gave 

satisfactory results in terms of average returns and success 

rates. However, the reallocation task’s duplication faced issues 

due to limited computational resources.  

While training the agent, we require a system with an 

efficient graphics card and a powerful Central Processing Unit 

(CPU). Due to our system limitations, we were not able to train 

the agent for more than 500 episodes. 

For future work, we can compare our results using AWAC 

with the other potential on-policy/ off-policy RL algorithms for 

analysis and performance comparison in more challenging real-

world robotic applications. For overcoming the limitations of 

the system, we aim to utilize the on-campus computational 

resources for fair comparison analysis. 

 

 

Fig. 9. Simulation Results of Door Opening by twisting a latch task (a) 

Average Return versus iterations for our implementation of AWAC (b) 
Success Rate versus iterations for our implementation of AWAC (c) Success 

Rate versus iterations from baseline paper [1] 

Table 3. Performance parameters observed for average returns versus 

time steps for Door Opening task  

Performance Parameters Values 

Average of all Returns 140.4 

Deviation Average Return 108.10 

Number of episodes 500 

Time steps per episode 1000 

 

 

 

 

 
Fig. 10. Door Opening Task - Screenshot from the simulation video 

 

Fig. 11. Simulation Results of Object Reorientation Task (a) Success 

Rate versus iterations for our implementation of AWAC (b) Success 

Rate versus iterations from baseline paper [1] 

https://drive.google.com/file/d/1CubWjwT8BNGOsXo6mw99RfeuHOzWfg_w/view?usp=share_link
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Table 4. Challenges faced in the implementation of AWAC and the 

solutions adopted 

No.# Challenges Faced Solutions adopted 

1. 

The training script 

was designed with 

number of seeds as 

3 to run three 

training parallel 

experiments on 3 

Amazon Web 

Services ec2 

machines. 

The training script was 

restructured to 

accommodate local 

training and we were able 

to reproduce results with 

just one seed. 

2. 

The requirements 

listed for the 

environment setup 

were incomplete. 

By parsing the logs, the 

missing packages were 

installed. We were 

cautious while installing 

these packages and 

ensured that they don’t 

break the existing conda 

environment by using 

the command: 

pip install –no-

dependencies 

<package_name> 

3. 

Deprecated 

packages such as 

path and 

multiworld raised 

“module not 

found” errors. 

Path package was replaced 

with pathlib in all such 

instances. mutiworld was 

installed from the source. 

 

 

 


	I. Introduction
	II. ADVANTAGE WEIGHTED ACTOR CRITIC ALGORITHM
	A. POLICY EVALUATION (CRITIC NETWORK)
	B. POLICY IMPROVEMENT (ACTOR NETWORK)
	C. ALGORITHM SUMMARY

	III.  IMPLEMENTATION & SIMULATION
	A. Dexterous Manipulation with a Robotic Hand.
	B. ACTOR, CRITIC DEEP NEURAL NETWORK ARCHITECTURE & HYPERPARAMETERS
	C. SYSTEM SETUP, DATA SET & TRAINING PROCESS

	IV. RESULTS & ANALYSIS
	A. Pen Reorientation Task Training & Results:
	B. Door Opening Task Training & Results
	C. Object Relocation Task Training & Results

	V. CHALLENGES FACED & RESOLUTIONS
	VI. CONCLUSION & FUTURE WORK
	VII. References
	PROJECT CONTRIBUTIONS:



